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We present an analytic study of finite-size effects on critical diffusion above and bElowf three-
dimensional Ising-like systems whose order parameter is coupled to a conserved density. We also calculate the
finite-size relaxation time that governs the critical order-parameter relaxation towards a metastable equilibrium
state belowT.. Two universal dynamic amplitude ratios Bt are predicted and quantitative predictions of
dynamic finite-size scaling functions are given that can be tested by Monte Carlo simulations.
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The dissipative critical dynamics difulk systems with a In this Rapid Communication we present a prediction of
nonconserved order parameter is fairly well understood. Dethe finite-size scaling function for the critical diffusion time
pending on whether the order parameter is governed byf three-dimensional systems above and below Further-
purely relaxational dynamics or whether it is coupled to amore, we shall present the analytic identification and quanti-
hydrodynamic(conservedl density, such systems belong to tative calculation of a leading relaxation time that governs
the universality classes of modetsor C [1,2]. The funda- the critical order-parameter relaxation towardmatastable
mental dynamic quantities of these systems are the remxat'%huilibrium state of finite systems beldiy. Our predictions
and diffusion times that diverge as the critical temperalye  ontain no adjustable parameters other than two amplitudes

is approached. _ of the bulk system.

For finite systems, these times are expected to become We start from modeC [2], i.e., from the relaxational and
smooth and finite throughout the critical region and to de-jice o\ o Langevin equation,s.f(.),r the one-component order-
pend sensitively on the geometry and boundary Conditions'arameter fieldo(x.t) and for the densit ) —
These finite-size effects are particularly large in Monte carld’ . DPLS yp(x.)={p)
(MC) simulations of small systems. On a qualitative level, © M(X:t) in & finite volumeV,

they can be interpreted on the basis of phenomenological

HCA . . ! - dp(X,t)

finite-size scaling assumptions. For a more stringent analysis =-T +0 ,(x,t) )
i inite-si i at 05p(x,t) e

knowledge of the shape of universal finite-size scaling func- ¢4

tions is necessary. So far there exist reliable theoretical pre-

dictions on finite-size dynamics in three dimensions only for Jm(x,t) V2 oH 1O (x1) 7

two relaxation timesr; and 7,, which determines the long- at 0% sm(xt) m

time behavior of the order parameter and the square of the
order parametdr3,4]. No analytic work exists, to the best of
our knowledge, on the important universality cld4g of
diffusive finite-size behavior nedr.. This is of relevance,
e.g., to magnetic systems with mobile impurit{dg, to bi- + yome2—hom], 3
nary alloys with an order-disorder transitif 6], to uniaxial ]

antiferromagnetfl], or to systems in which the order param- Where®, and®, are Gaussia-correlated random forces.
eter is coupled to the conserved energy der4itg]. We consider an equilibrium ensemble nda(p) at fixed

H= f d%[ 3709+ 3 (V@) 2+ Uge*+ 3 m?
\Y
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X limit k— 0 for the finite system. Therefore, we need to derive
the finite-size scaling function fof),(k,t,L) at finite k.
Nevertheless we may define an effective diffusion time
=Q,(27L"1t,L)"! or a diffusion constanD=0Q,/k? at
k=Kmin=2m/L of the finite system by

D(t,L)=(2m) 2L2Q,(27L L 1,L), (6)

which interpolates smoothly between the bulk result
D(t,)=D*(t) above and beloW (Fig. ).

In the spirit of finite-size theonyf3,7] we decompose
o(X,t)=Mgy+ So(x,t) with the zero-mode average

M§=f dMMZeHo/f dMe Mo, (7)

(T-THT whereHo(M)=L9%%7,M2+UyM*%) is thek=0 part ofH,
e _with M=V~ 1[,d%¢. For the finite system, the quantity
FIG. 1. Diffusion constanD(t,L)/A; for L=80¢, (solid line) vs t, MO(TOaL) is nonzero for allT and interpolates smoothly

and of the scaling functioip(x) [Eq. (12] vs x=TL®"®"" (solid i,  petweenT>T, and T<T,. Linearization of Eqs(1)—(3)
with L in units of &. The dashed lines represent the bulk diffusion con- with respect tode, (t) andm,(t) leads to

stantsD* (t)/A] .

_ _ _ Cn(k)=(Woy0) by —[(bg)*+woygk’]3,  (8)
p=V~1[,d%p(x,t). This corresponds to the experimental

situation of keeping the conserved quantigyg., number of Q. (kT =2INdb —T(b)2+ wWav2k2]Y 9
impurities fixed when changing the reduced temperature n(kLL)=2holbg ~[(bg)*+woryk']™S,  (9)
Tz[T—E(p)]/TC(p). The_latter enters through,. Because be (K) = Wo( ro+12t~JOMS+k2)ik2, (10)

of (p)=p we have(m)=m=0. Equationg1)—(3) describe
the dynamics of relaxational and diffusive modes that iswith wy=1"y/\y andy,=4yoM,.
coupled throughy,. We are interested in the long-time be-  An application of these unrenormalized expressions to the
havior of the diffusive modes above, at, and beldw as critical region requires us to turn to the renormalized theory.
well as in the order-parameter relaxation on an intermediat&he strategy of the field-theoretic renormalization-group
time scale belowT.. We shall begin with the diffusive (RG) approach atd=3 dimensions is well established in
modes. For simplicity and for the purpose of a comparisorbulk statics[8] and dynamicg§9] and has been successfully
with MC simulations, we assume cubic geome¥y-L%  applied recently to the modél-finite-size dynamic§3]. The
with periodic boundary conditions. details of its application to mod& will be given elsewhere
For thebulk system, the diffusion constariis”(t) above [10]. Here we only present the asymptotic finite-size scaling
and belowT, appear in the smak-limit of the long-time  form
behavior of the correlation function N 5
Qn(k,t,L)=L"2f (L9 kL) (11
T y—\yv—1 — N1\ L2
Calk D=V (ON-(0))~exi = DH (DK, (4 as derived from Egs(5) and (8)—(10), with the dynamic
where n,(t)=m,(t) +c,(K) 4 (t) is an appropriate linear critical exponeniz=2+a/v [2]. The scaling function reads
combination of my(t)=[ydm(x,t)e"'k* and ¢ (t) in three dimensions:
= [vd[o(x,t) = (@)le ™ * with cy(k)=Cpk?+O(K?).

The coefficientc,, can be identified by linearizing Eqél)— fa(X, ) =An/ b, —[b% +w*c* /22 D,(y) ]2,
(3). AboveT., c,=0 because of¢)=0. At T, the long- _
time behavior ofC, is nonexponentia(power law for the b. (X, k) =W*[/(X)?+ k%] * K2,
bulk system.
For thefinite system, the coefficiert,(k) is modified[via 7 (X)¥2= (470" ) Y2y (x) + 129,[V(X) ]},
the replacemen{¢o)— M, as defined in Eqs(7) and (8)
EZ:-OW] and the long-time behavior @&, remains exponen- §(X)=(4m~1*)‘1’ZZ(X)(3/2)‘(1‘“)’”§(,
Ca(k L) ~ex] — Qa(kT,Lt], 5) My):( f ds Sze_1,2y52_54) / ( f ds e—lfzvsz-S“),
0 0

even in the nonhydrodynamic region at bdlk where the ~ .

smallk approximation is no longer justified. As a conceptualwith c*=16(y*)3(4m/u*)¥? and x=x& ", This
complication there exists a smallesbnzero value k%, yields the scaling fornD(t,L)=L2"2f5(x) for the diffusion
=47?/L? of k? which prevents us from performing the constan{Eq. (6)] with
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fo(X)=(2m) 2f,(X,2m). (12
The static parameters af8] u* =u* +(y*)%/2 and (y*)?
=a[4vB(u*)]~ ! with [11] u* =0.0404 andB(u*)=0.502
in three dimensions. For and o we take 0.6335 and 0.100
[12]. The dynamic parameter i&* =1 in one-loop order.
The two nonuniversal bulk amplitudegy(p) and A,
=3A} gé’z are defined by the asymptotic behavigr
=&t V79 and DT (1) = A T# 2179 of the correla-
tion length and diffusion constant at fixgdaboveT.. The
exponenty/(1— «) instead ofv is due to Fisher renormal-
ization[13].

The solid line in Fig. 1 show®(t,L)/A; vs for the
exampleL =80¢,. The same line represeritg(x) vs x (top
scalg. For comparison the bulk limit® * (dashed lingsare
also shown, with Ag/Aj=291"9(1+3y*2/y*)"1

=0.55. We expect the accuracy of these results to be of
O (10%). These predictions can be tested by MC simula-

tions, after adjustingo(;) andAj in the bulk regionx>1
aboveT,.

In addition to the finite-size effect on the diffusive modes
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FIG. 2. Relaxation times(t,L)/A}, for L=8Ca (solid line vs t
=(T-T.)/T., and of their scaling function(x) vs x=tL" (solid lines,
with L in units of the lattice constart; dashed lines, bulk relaxation times
(DAY,

there exists an interesting finite-size effect on the relaxational ) ] o . o
modes belowT, that has to our knowledge not been inves-Félaxation timer;(L) whose finite-size scaling function is

tigated analytically so far. It is well known that no sponta-

known both analytically3,4] and numerically3,16]. In par-

neous symmetry breaking can take place in finite systemtcular, im__., 7;(L)=r .

below T, because of ergodicity. For Ising-like systems, er-

For the finite systenbelow T., however, the situation is

godicity implies a “tunneling” between metastable states ofmore complicated and considerably less well explored. MC
opposite orientation of the magnetization as observed in M@imulations[14] and phenomenological considerations sug-

simulations [14-16. On an intermediate time scale

gest that there should exist an dependent generalization

<ty (L), however, the magnetization does not change sigm (L) of =, , with lim__.7"(L)=7, , which should de-

and its magnitude relaxes towarddirite value that charac-
terizes such a metastable stild]. This relaxation process is
important for large systems since the crossover tighe) is
expected to grow with the size as ~L? wherez is the

scribe (i) the exponential relaxation @M (t,L)) towards a
metastable finite value on an intermediate time sdale
<t,(L) before tunneling sets in, an@i) a corresponding
exponential decay dE(t,L) on this time scale. The question

dynamic critical exponent. This process occurs both in mode#rises whether and how this important relaxation timéL )

A and modelC; therefore, we confine ourselves to the sim-

pler modelA in the following. We stress that the relaxation
process fort<<t,(L) is fundamentally different from the ul-
timate long-time behavior fot>t,(L) studied previously
[3,4].

Model A is defined by Eq(1) whereH is replaced by

H¢=Jvddx[%ro¢2+%(V@)2+Uo¢4]- 13

We consider the time-dependent spatial averdy@,L)
=L 97,d% ¢(x,t). We are primarily interested in the
long-time behavior of the equilibrium correlation function
(M(t,L)YM(0,L))=C(t,L) for d=3. For the bulk system,
this behavior is

C(t,°)~Ayexp —t/7y ), (14)

C(t, ) —MZ,~Ay exp( —t/7,) (15)
above and belowl ., where Mg =lim;_.(M(t,)) is the
spontaneous order parameter agdare the bulk relaxation
times. For the finite systembove T;, the leading time de-
pendence is still a single exponentialc,e” Y71V with a

can be identified analytically within modeks and C. This
question was left unanswered in the previous literature. In
particular, neitherr;(L) nor 7,(L), as calculated previously
[3], can be identified withr—(L). [Below T.,7; describes
the decay of(M(t,L)) and of C(t,L) towardszero for t
>t,(L) due to tunneling processes, angddescribes the de-
cay of (M(t)?) and of (M (t)2M(0)?) towards(M?),, and
<M2>§q, respectively, fot>t,(L).] In the following we es-
tablish an analytic identification of (L) and present a
quantitative prediction for its finite-size scaling behavior.

To elucidate the main features we first neglect the inho-
mogeneous fluctuations(x,t) = ¢(x,t)—M(t). Then Eg.
(1) is equivalent to the Fokker-Planck equation
IP(M,t)/ot=— LyP(M,t) for the probability distribution
P(M,t) with the operator

Ty @

Lo=~d oM

(dHO(M)+i), (16)

dm M

whereHo(M)=L9%(3roM?+ugM?). It is well known [17]
that C(t,L) is determined by the eigenvalueg and eigen-
functions ¢ (M) of L, according to
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o

C(t,L)= 2> cp(L)exd —t/m(L)],

k=1

We proceed by presenting the results of a quantitative
calculation ofr3(L) and 75(L), including the effect of the
inhomogeneous fluctuatiorgx) to one-loop order. This cal-
culation is parallel to that performed previougl¥] and is
expected to be as reliable as the previous regalislt is
<€;<€... . By symmetry,c,=0 for even values ok.  pased on the Fokker-Planck equatiodP(M,t)/at
Below T., m(L)_diverges in the bulk limit and = _/ p(M,t), wherel, has the same structure &g [Eq.
lim__.. c;e”1=MZ, becomes time independent, thus an(16)] but with rq,u,,T’ replaced by(positive effective pa-
analysis of th&k=3 term in Eq.(17) becomes indispensable. rameters & ,ug'", I [3,7,19. In terms of the eigenvalues
From the spectrum of, [17] we find a degeneracy fdt  u4(«) and us(«) of the equivalent Schidinger equation
=3 andk=5 in the bulk limit forry<<0. This requires us to [17] we determine the relaxation timeg and 75 as
take thek=5 term into account as well. We have found, o areff—1y d/2,. efh—1/2
however, that the coefficierts vanishes in the bulk limit 7 =(20") L™ (Uug )~ (k).
below T, whereas; remains finite. For finitd nearT., 75
is well separated fronrs, as shown below. Thus it suffices
to describe the time dependence@ft,L) on intermediate
time scalest~O[7 (L)] andO[ 7 (L) ]<t<O[7(L)] as
well as on the long-time scale> (L) as

t>0, (17

with ¢ (L)=[fZ..dMM¢(M)]? and 7 (L)=¢, >, €=0

(21)

with «=3rg"LY%(u™ %2 In the asymptotic region the
field-theoretic RG approach at=3 [3, 7-9 vyields the
finite-size scaling formr;=L*f;(x), i =3,5, with the scaling
variablex=tLY”, T=(T—T,)/T.. The analytic expressions
for f;(x) are analogous to those given previoysyand will
be given elsewhergElQ]. At T, we predict the universal ra-
tiOS 71/7'3: 85 and’7'3/7'5: 23

The results are shown in Fig. 2. For an application to the
Ising model we have takegy,/a=0.495[12], wherea is the
lattice spacing. The relaxation timesin Fig. 2 are normal-
ized to the bulk amplitudeA, of 7 =A%LT1""% z=2.04
(dashed line abovd,). Below T., our theory yields the
expected 20,21 exponential decajEqg. (15)] for the d=3
bulk system, in disagreement with RE22]. The dashed line

C(t,L)~cy(L)e Y4 cq(L)e Yl (18)
wherecq ()= Mgp andcs()=A, belowT.. In particular
we arrive at the desired identification

7 (L)=73(L), lim=(L)=7, .

L—oo

19

We conclude that, althougty(L) represents only a sublead-
ing relaxation time abovd ., 73(L) governs the leading
time dependence of(GL) of large finite systems below, T  below T, represents the bulk relaxation timg =A_[t| "
(Fig. 2. with A /A’ =2""%(1+ Ju*)/(1+18u*)=0.26 in three di-
These results also yield the key to the interpretation ofyensions. Unlike forr, and 7, [3,15,16, no MC data are
73(L) as the relaxation time governing the approach of thepresenﬂy available for.
nonequilibriumquantity (M(t,L)) towards ametastablefi- In summary we have presented quantitative predictions
nite value beforevi(t,L) starts to change sign. This interpre- for the finite-size effects on critical diffusion and order-
tation is based on the fa¢i8] that the leading relaxation parameter relaxation towards metastable equilibrium in
times of (M(t,L)) are determined by the same eigenvaluespree-dimensional systems néBy. It would be interesting

tion functionC, i.e.,
(M(t,L))~cy(L)e YD 4gyL)e =), (20)

The basic difference between Eq20) and (18) is that the
coefficientsc, depend on the initialnonequilibriun) state.

finite-size scaling function$p(x) and f;(x) (Figs. 1 and 2
by MC simulations. This appears to be within reach of
present simulation techniqug23].
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