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We present an analytic study of finite-size effects on critical diffusion above and belowTc of three-
dimensional Ising-like systems whose order parameter is coupled to a conserved density. We also calculate the
finite-size relaxation time that governs the critical order-parameter relaxation towards a metastable equilibrium
state belowTc . Two universal dynamic amplitude ratios atTc are predicted and quantitative predictions of
dynamic finite-size scaling functions are given that can be tested by Monte Carlo simulations.
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The dissipative critical dynamics ofbulk systems with a
nonconserved order parameter is fairly well understood.
pending on whether the order parameter is governed
purely relaxational dynamics or whether it is coupled to
hydrodynamic~conserved! density, such systems belong
the universality classes of modelsA or C @1,2#. The funda-
mental dynamic quantities of these systems are the relaxa
and diffusion times that diverge as the critical temperatureTc
is approached.

For finite systems, these times are expected to beco
smooth and finite throughout the critical region and to d
pend sensitively on the geometry and boundary conditio
These finite-size effects are particularly large in Monte Ca
~MC! simulations of small systems. On a qualitative lev
they can be interpreted on the basis of phenomenolog
finite-size scaling assumptions. For a more stringent anal
knowledge of the shape of universal finite-size scaling fu
tions is necessary. So far there exist reliable theoretical
dictions on finite-size dynamics in three dimensions only
two relaxation timest1 andt2 , which determines the long
time behavior of the order parameter and the square of
order parameter@3,4#. No analytic work exists, to the best o
our knowledge, on the important universality class@1# of
diffusive finite-size behavior nearTc . This is of relevance,
e.g., to magnetic systems with mobile impurities@1#, to bi-
nary alloys with an order-disorder transition@5,6#, to uniaxial
antiferromagnets@1#, or to systems in which the order param
eter is coupled to the conserved energy density@1,2#.
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In this Rapid Communication we present a prediction
the finite-size scaling function for the critical diffusion tim
of three-dimensional systems above and belowTc . Further-
more, we shall present the analytic identification and qua
tative calculation of a leading relaxation time that gover
the critical order-parameter relaxation towards ametastable
equilibrium state of finite systems belowTc . Our predictions
contain no adjustable parameters other than two amplitu
of the bulk system.

We start from modelC @2#, i.e., from the relaxational and
diffusive Langevin equations for the one-component ord
parameter fieldw(x,t) and for the densityr(x,t)5^r&
1m(x,t) in a finite volumeV,

]w~x,t !

]t
52G0

dH

dw~x,t !
1Qw~x,t !, ~1!

]m~x,t !

]t
5l0¹2

dH

dm~x,t !
1Qm~x,t !, ~2!

H5E
V
ddx@ 1

2 t0w21 1
2 ~¹w!21ũ0w41 1

2 m2

1g0mw22h0m#, ~3!

whereQw andQm are Gaussiand-correlated random forces
We consider an equilibrium ensemble nearTc( r̄) at fixed
R1179 © 1998 The American Physical Society
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r̄5V21*Vddxr(x,t). This corresponds to the experiment
situation of keeping the conserved quantity~e.g., number of
impurities! fixed when changing the reduced temperat
t̃ 5@T2Tc( r̄)#/Tc( r̄). The latter enters throught0 . Because
of ^r&5 r̄ we have^m&5m̄50. Equations~1!–~3! describe
the dynamics of relaxational and diffusive modes that
coupled throughg0 . We are interested in the long-time b
havior of the diffusive modes above, at, and belowTc , as
well as in the order-parameter relaxation on an intermed
time scale belowTc . We shall begin with the diffusive
modes. For simplicity and for the purpose of a comparis
with MC simulations, we assume cubic geometryV5Ld,
with periodic boundary conditions.

For thebulk system, the diffusion constantsD6( t̃ ) above
and belowTc appear in the small-k limit of the long-time
behavior of the correlation function

Cn~k, t̃ ,t !5V21^nk~ t !n2k~0!&;exp@2D6~ t̃ !k2t#, ~4!

where nk(t)5mk(t)1cn(k)ck(t) is an appropriate linea
combination of mk(t)5*Vddxm(x,t)e2 ik•x and ck(t)
5*Vddx@w(x,t)2^w&#e2 ik•x with cn(k)5 c̃nk21O(k4).
The coefficientcn can be identified by linearizing Eqs.~1!–
~3!. Above Tc , cn50 because of̂w&50. At Tc , the long-
time behavior ofCn is nonexponential~power law! for the
bulk system.

For thefinitesystem, the coefficientcn(k) is modified@via
the replacement̂w&→M0 as defined in Eqs.~7! and ~8!
below# and the long-time behavior ofCn remains exponen
tial;

Cn~k, t̃ ,L,t !;exp@2Vn~k, t̃ ,L !t#, ~5!

even in the nonhydrodynamic region at bulkTc where the
small-k approximation is no longer justified. As a conceptu
complication there exists a smallestnonzero value kmin

2

54p2/L2 of k2, which prevents us from performing th

FIG. 1. Diffusion constantD( t̃ ,L)/AD
1 for L580j0 ~solid line! vs t̃ ,

and of the scaling functionf D(x) @Eq. ~12!# vs x5 t̃ L (12a)/n ~solid line!,
with L in units of j0 . The dashed lines represent the bulk diffusion co

stantsD6( t̃ )/AD
1 .
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limit k→0 for the finite system. Therefore, we need to der
the finite-size scaling function forVn(k, t̃ ,L) at finite k.
Nevertheless we may define an effective diffusion timetD

5Vn(2pL21, t̃ ,L)21 or a diffusion constantD5Vn /k2 at
k5kmin52p/L of the finite system by

D~ t̃ ,L !5~2p!22L2Vn~2pL21, t̃ ,L !, ~6!

which interpolates smoothly between the bulk res
D( t̃ ,`)5D6( t̃ ) above and belowTc ~Fig. 1!.

In the spirit of finite-size theory@3,7# we decompose
w(x,t)5M01dw(x,t) with the zero-mode average

M0
25E

2`

`

dMM2e2H0Y E
2`

`

dMe2H0, ~7!

whereH0(M )5Ld( 1
2 t0M21ũ0M4) is the k50 part of H,

with M5V21*Vddxw. For the finite system, the quantit
M0(t0 ,L) is nonzero for allT and interpolates smoothly
betweenT.Tc and T,Tc . Linearization of Eqs.~1!–~3!
with respect todwk(t) andmk(t) leads to

cn~k!5~w0g̃0!21$b0
22@~b0

2!21w0g̃0
2k2#1/2%, ~8!

Vn~k, t̃ ,L !5 1
2 l0$b0

12@~b0
2!21w0g̃0

2k2#1/2%, ~9!

b0
6~k!5w0~t0112ũ0M0

21k2!6k2, ~10!

with w05G0 /l0 and g̃054g0M0 .
An application of these unrenormalized expressions to

critical region requires us to turn to the renormalized theo
The strategy of the field-theoretic renormalization-gro
~RG! approach atd53 dimensions is well established i
bulk statics@8# and dynamics@9# and has been successful
applied recently to the model-A finite-size dynamics@3#. The
details of its application to modelC will be given elsewhere
@10#. Here we only present the asymptotic finite-size scal
form

Vn~k, t̃ ,L !5L2zf n~ t̃ L ~12a!/n,kL! ~11!

as derived from Eqs.~5! and ~8!–~10!, with the dynamic
critical exponentz521a/n @2#. The scaling function reads
in three dimensions:

f n~x,k!5Anl̃ a/n$b12@b2
2 1w* c* l˜1/2k2q2~ ỹ!#1/2%,

b6~x,k!5w* @ l̃ ~x!21k2#6k2,

l̃ ~x!3/25~4pũ* !1/2$ ỹ~x!112q2@ ỹ~x!#%,

ỹ~x!5~4pũ* !21/2l̃ ~x!~3/2!2~12a!/nx̂,

q2~y!5S E
0

`

ds s2e21/2ys22s4D Y S E
0

`

ds e21/2ys22s4D ,

with c* 516(g* )2(4p/ũ* )1/2 and x̂5xj0
2(12a)/n . This

yields the scaling formD( t̃ ,L)5L22zf D(x) for the diffusion
constant@Eq. ~6!# with
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f D~x!5~2p!22f n~x,2p!. ~12!

The static parameters are@8# ũ* 5u* 1(g* )2/2 and (g* )2

5a@4nB(u* )#21 with @11# u* 50.0404 andB(u* )50.502
in three dimensions. Forn anda we take 0.6335 and 0.10
@12#. The dynamic parameter isw* 51 in one-loop order.
The two nonuniversal bulk amplitudesj0( r̄) and An

5 1
2 AD

1j0
z22 are defined by the asymptotic behaviorj

5j0 t̃ 2n/(12a) and D1( t̃ )5AD
1 t̃ (z22)n/(12a) of the correla-

tion length and diffusion constant at fixedr̄ aboveTc . The
exponentn/(12a) instead ofn is due to Fisher renormal
ization @13#.

The solid line in Fig. 1 showsD( t̃ ,L)/AD
1 vs t̃ for the

exampleL580j0 . The same line representsf D(x) vs x ~top
scale!. For comparison the bulk limitsD6 ~dashed lines! are
also shown, with AD

2/AD
152a/(12a)(11 1

2 g* 2/u* )21

50.55. We expect the accuracy of these results to be
O ~10%!. These predictions can be tested by MC simu
tions, after adjustingj0( r̄) andAD

1 in the bulk regionx@1
aboveTc .

In addition to the finite-size effect on the diffusive mod
there exists an interesting finite-size effect on the relaxatio
modes belowTc that has to our knowledge not been inve
tigated analytically so far. It is well known that no spont
neous symmetry breaking can take place in finite syste
below Tc because of ergodicity. For Ising-like systems,
godicity implies a ‘‘tunneling’’ between metastable states
opposite orientation of the magnetization as observed in
simulations @14–16#. On an intermediate time scalet
,tx(L), however, the magnetization does not change s
and its magnitude relaxes towards afinite value that charac-
terizes such a metastable state@14#. This relaxation process i
important for large systems since the crossover timetx(L) is
expected to grow with the sizeL as ;Lz, wherez is the
dynamic critical exponent. This process occurs both in mo
A and modelC; therefore, we confine ourselves to the sim
pler modelA in the following. We stress that the relaxatio
process fort,tx(L) is fundamentally different from the ul
timate long-time behavior fort@tx(L) studied previously
@3,4#.

Model A is defined by Eq.~1! whereH is replaced by

Hw5E
V
ddx@ 1

2 r 0w21 1
2 ~¹w!21u0w4#. ~13!

We consider the time-dependent spatial averageM (t,L)
5L2d*Vddx w(x,t). We are primarily interested in th
long-time behavior of the equilibrium correlation functio
^M (t,L)M (0,L)&[C(t,L) for d53. For the bulk system
this behavior is

C~ t,`!;Ab
1exp~2t/tb

1!, ~14!

C~ t,`!2Msp
2 ;Ab

2exp~2t/tb
2! ~15!

above and belowTc , whereMsp5 limt→`^M (t,`)& is the
spontaneous order parameter andtb

6 are the bulk relaxation
times. For the finite systemabove Tc , the leading time de-
pendence is still a single exponential;c1e2t/t1(L) with a
of
-

al
-

s
-
f
C

n

el
-

relaxation timet1(L) whose finite-size scaling function i
known both analytically@3,4# and numerically@3,16#. In par-
ticular, limL→` t1(L)5tb

1 .
For the finite systembelow Tc , however, the situation is

more complicated and considerably less well explored. M
simulations@14# and phenomenological considerations su
gest that there should exist anL dependent generalizatio
t2(L) of tb

2 , with limL→`t2(L)5tb
2 , which should de-

scribe~i! the exponential relaxation of^M (t,L)& towards a
metastable finite value on an intermediate time scalt
,tx(L) before tunneling sets in, and~ii ! a corresponding
exponential decay ofC(t,L) on this time scale. The questio
arises whether and how this important relaxation timet2(L)
can be identified analytically within modelsA and C. This
question was left unanswered in the previous literature
particular, neithert1(L) nor t2(L), as calculated previously
@3#, can be identified witht2(L). @Below Tc ,t1 describes
the decay of^M (t,L)& and of C(t,L) towardszero for t
@tx(L) due to tunneling processes, andt2 describes the de
cay of ^M (t)2& and of ^M (t)2M (0)2& towards^M2&eq and
^M2&eq

2 , respectively, fort@tx(L).# In the following we es-
tablish an analytic identification oft2(L) and present a
quantitative prediction for its finite-size scaling behavior.

To elucidate the main features we first neglect the in
mogeneous fluctuationss(x,t)5w(x,t)2M (t). Then Eq.
~1! is equivalent to the Fokker-Planck equatio
]P(M ,t)/]t52L0P(M ,t) for the probability distribution
P(M ,t) with the operator

L052
G0

Ld

]

]M S dH0~M !

dM
1

]

]M D , ~16!

where H0(M )5Ld( 1
2 r 0M21u0M4). It is well known @17#

that C(t,L) is determined by the eigenvaluesek and eigen-
functionsfk(M ) of L0 according to

FIG. 2. Relaxation timest i( t̃ ,L)/Atb
1 for L580ã ~solid lines! vs t̃

5(T2Tc)/Tc , and of their scaling functionsf i(x) vs x5 t̃ L1/n ~solid lines!,

with L in units of the lattice constantã; dashed lines, bulk relaxation time

tb
6( t̃ )/Atb

1 .
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C~ t,L !5 (
k51

`

ck~L !exp@2t/tk~L !#, t.0, ~17!

with ck(L)5@*2`
` dMMfk(M )#2 and tk(L)5ek

21 , e050
<e1<e2 . . . . By symmetry,ck50 for even values ofk.
Below Tc , t1(L) diverges in the bulk limit and
limL→` c1e2t/t15Msp

2 becomes time independent, thus
analysis of thek53 term in Eq.~17! becomes indispensable
From the spectrum ofL0 @17# we find a degeneracy fork
53 andk55 in the bulk limit for r 0,0. This requires us to
take thek55 term into account as well. We have foun
however, that the coefficientc5 vanishes in the bulk limit
belowTc whereasc3 remains finite. For finiteL nearTc , t5
is well separated fromt3 , as shown below. Thus it suffice
to describe the time dependence ofC(t,L) on intermediate
time scalest;O@t2(L)# and O@t2(L)#,t,O@t1(L)# as
well as on the long-time scalet@t1(L) as

C~ t,L !;c1~L !e2t/t1~L !1c3~L !e2t/t3~L !, ~18!

wherec1(`)5Msp
2 andc3(`)5Ab

2 below Tc . In particular
we arrive at the desired identification

t2~L ![t3~L !, lim
L→`

t3~L !5tb
2 . ~19!

We conclude that, althought3(L) represents only a sublead
ing relaxation time aboveTc , t3(L) governs the leading
time dependence of C(t,L) of large finite systems below Tc
~Fig. 2!.

These results also yield the key to the interpretation
t3(L) as the relaxation time governing the approach of
nonequilibriumquantity ^M (t,L)& towards ametastablefi-
nite value beforeM (t,L) starts to change sign. This interpr
tation is based on the fact@18# that the leading relaxation
times of ^M (t,L)& are determined by the same eigenvalu
of L0 as the long-time behavior of the equilibrium correl
tion functionC, i.e.,

^M ~ t,L !&; c̃1~L !e2t/t1~L !1 c̃3~L !e2t/t3~L !. ~20!

The basic difference between Eqs.~20! and ~18! is that the
coefficientsc̃k depend on the initial~nonequilibrium! state.
.

f
e

s

We proceed by presenting the results of a quantita
calculation oft3(L) and t5(L), including the effect of the
inhomogeneous fluctuationss~x! to one-loop order. This cal-
culation is parallel to that performed previously@3# and is
expected to be as reliable as the previous results@3#. It is
based on the Fokker-Planck equation]P(M ,t)/]t
52L1P(M ,t), whereL1 has the same structure asL0 @Eq.
~16!# but with r 0 ,u0 ,G0 replaced by~positive! effective pa-
rametersr 0

e f f ,u0
e f f ,G0

e f f @3,7,19#. In terms of the eigenvalue
m3(k) and m5(k) of the equivalent Schro¨dinger equation
@17# we determine the relaxation timest3 andt5 as

t i5~2G0
e f f!21Ld/2~u0

e f f!21/2m i~k!, ~21!

with k5 1
2 r 0

e f fLd/2(u0
e f f)21/2. In the asymptotic region the

field-theoretic RG approach atd53 @3, 7–9# yields the
finite-size scaling formt i5Lzf i(x), i 53,5, with the scaling
variablex5 t̃ L1/n, t̃ 5(T2Tc)/Tc . The analytic expression
for f i(x) are analogous to those given previously@3# and will
be given elsewhere@10#. At Tc we predict the universal ra
tios t1 /t358.5 andt3 /t552.3.

The results are shown in Fig. 2. For an application to
Ising model we have takenj0 /ã50.495@12#, whereã is the
lattice spacing. The relaxation timest i in Fig. 2 are normal-
ized to the bulk amplitudeAtb

1 of tb
15Atb

1 t̃ 2nz, z52.04
~dashed line aboveTc!. Below Tc , our theory yields the
expected@20,21# exponential decay@Eq. ~15!# for the d53
bulk system, in disagreement with Ref.@22#. The dashed line
below Tc represents the bulk relaxation timetb

25Atb
2 u t̃ u2nz

with Atb
2 /Atb

1 522nz(11 9
4 u* )/(1118u* )50.26 in three di-

mensions. Unlike fort1 and t2 @3,15,16#, no MC data are
presently available fort3 .

In summary we have presented quantitative predicti
for the finite-size effects on critical diffusion and orde
parameter relaxation towards metastable equilibrium
three-dimensional systems nearTc . It would be interesting
to test the predicted universal ratiost1 /t3 , t3 /t5 and the
finite-size scaling functionsf D(x) and f i(x) ~Figs. 1 and 2!
by MC simulations. This appears to be within reach
present simulation techniques@23#.
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